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1 Introduction

Price bubbles are not a rare phenomenon. Indeed, there are many historical examples of commodity

or financial asset markets that have experienced a period of sharp rising prices followed by an abrupt

crash. One of the earliest recorded and most famous examples is the Tulip mania (Holland, 1637), in

which prices reached a peak of over ten times greater than a skilled craftsman’s annual income and then

suddenly crashed to a fraction of its value. More recent examples include the real estate bubble crash of

2008, the 2018 Bitcoin and other crypto-currencies crashes.

As price bubbles represent a phenomenon with substantive economic implications, they are widely

studied in finance and economics. Experimental methods are a valuable tool in the study of bubbles.

They allow researchers to control for and manipulate factors that are difficult to do so in field markets,

such as the fundamental value process, trading rules and traders’ information. Smith et al. [1988] were

the first to observe price bubbles in long-lived finite horizon experimental asset markets. Many studies

have followed the pioneering work of Smith et al. in order to test the robustness of the price bubble

phenomenon.1

The leading behavioral explanations for the existence of price bubbles include heterogeneity in price

expectations and levels of trader sophistication, e.g., [Smith et al., 1988, Lei et al., 2001, Cheung et al.,

2014, Noussair et al., 2016].We believe that there are important and understudied interaction effects

between trading institutions, expectations’ heterogeneity and the impact of unsophisticated traders on

mispricing. The purpose of this paper is to study such interactions.

We use experimental methods to study the effect of trading institutions on the formation of bubbles

and crashes in the Smith et al. [1988] environment and focus on three trading institutions: Double

Auction (DA), Call Market (CM) and Tâtonnement (TT).2 We employ the Smith et al. [1988] paradigm

for several reasons. First, the fundamental value of the asset is well-defined, allowing us to identify and

measure bubbles. Second, our focus is on bubbles’ taming, and bubbles are a robust finding of this

environment. Third, noise and limited intelligence appear to play an important role in this context (e.g.,

Lei et al. [2001] and Hussam et al. [2008]), allowing us to study whether trading institutions play a role

in decreasing the impact of noise and limited intelligence on price formation. Specifically, Gode and

1For reviews, see Plott and Smith [2008], Noussair and Tucker [2013], Palan [2013], Powell and Shestakova [2016].
2Call markets may also be referred to as clearinghouse mechanisms in the literature (see Friedman [1993] or Limit Order

Books).
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Sunder [1993] show that double auctions tend to reach high levels of allocative efficiency in goods markets

even when they are populated by zero-intelligence traders, who submit bids and asks randomly subject

to minimal constraints. That is, goods markets can be smart, even though individual traders are not

rational. Clearly, experimental evidence shows that this property of the double auction does not transfer

to SSW asset markets, leaving the door open to explorations as to whether trading institutions other

than the double auction may lead to more “intelligent” market outcomes. Fourth, this environment has

been extensively studied in experimental economics, allowing us to compare our results to a large body

of existing studies. Finally, bubbles in this environment appear to be generated also by heterogeneity in

beliefs and trading strategies, which also play an essential role in the formation of bubbles in the field

(see also Haruvy and Noussair [2006]).

We focus on these three institutions for several reasons. First, while DA and CM have been widely

used in both the field and experimental asset markets, the TT is a trading institution of historical and

contemporary relevance. Indeed, TT is one of the earliest classical theories, which is explicit about market

price dynamics and adjustment to equilibrium (see Duffie and Sonnenschein [1989]). Furthermore, TT

is not just an abstract theoretical construct as it has been employed in some actual markets, e.g., the

Tokyo grain exchange (Eaves and Williams [2007]) or the pre-opening trading period on the Paris-Bourse

(see Biais et al. [1999]). Second, these institutions differ substantively. In DA, buyers and sellers tender

bids/asks publicly. Typically the highest bid to buy and the lowest ask to sell are displayed and open to

acceptance, and price quotes progress to reduce the bid ask spread. Trading is open for a limited period of

time and occurs bilaterally and sequentially at different prices within a period. In CM, bids and asks are

accumulated, and the maximum possible number of transactions are simultaneously cleared at a uniform

price per period. In TT, subjects submit quantities to buy or sell at a given price. If aggregate demand

is equal to aggregate supply, the market clears. Otherwise, the market proceeds with price adjustment

iterations until a market-clearing price is realized.

Based on these differences, CM and TT can be classified as uniform-price institutions with the price

being the same for all trades within a given period, while DA is characterized by multiple transaction

prices in each period. This multiplicity in transaction prices may potentially lead to more heterogeneous

expectations about the value of an asset in DA compared to uniform-priced CM and TT and thus result

in larger bubbles in discriminatory market institutions.

Our experimental findings support this conjecture: We find that price bubbles are mitigated in the
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uniform-price TT and CM institutions compared to DA. Due to the complexity of the trading environ-

ment, no micro founded model can be used to capture the main patterns of the data. Therefore, we

use a computational approach to provide insights to the determinants of market behavior across institu-

tions [see also Duffy and Ünver, 2006, Haruvy and Noussair, 2006]. Specifically, building on the existing

literature, we provide a heterogeneous-agents model with myopic and fundamental traders.

Relative to Haruvy and Noussair [2006] and Duffy and Ünver [2006], we study the impact of DA,

CM, and TT on bubbles’ formation within a unified framework.3 The functional form of the demand

function is the same across all institutions, namely, the quantity demanded is proportional to the difference

between how much an agent values the asset and his price expectation. However, traders’ valuation of

the asset is different between fundamental value traders and myopic traders. Fundamental value traders’

valuations are equal to the fundamental value of the asset. On the other hand, myopic traders anchor

their valuation to the previous period’s price with a bias, capturing the existence of anchoring biases that

have been documented in behavioral finance. We assume that all traders are myopic at the beginning

of the economy, and they switch to fundamental value traders as the economy unfolds over time. This

assumption captures the idea that traders may exhibit different degrees of foresight, i.e., some traders

may realize that prices will eventually converge to the fundamental value earlier, while it may take longer

to come to this realization for other traders.

We estimate structural parameters of the model using experimental data from the TT and CM institu-

tions.4 Then, using the same set of parameters, we simulate the model under all three trading institutions.

This method ensures that the differences across simulated data are only due to institutional differences

across the three trading mechanisms and not simply due to the changes in the model’s parameters. The

model generates price patterns very similar to the experimental data. We observe a bubble and crash

pattern across all institutions. More importantly, consistent with the experimental data, the size of the

bubble is larger in DA, whereas TT and CM generate similar size bubbles. The two main reasons for the

occurrence of the bubble-crash pattern across all institutions are the following. First, myopic traders’

valuation bias is estimated to be positive. Second, the share of individuals acting as myopic traders

decreases over time, while the share of individuals acting as fundamental traders increases over time.

However, these features are not enough to generate a larger bubble in DA. The key characteristic of DA

3Duffy and Ünver [2006] focuses on double auctions in both experiments and model, while Haruvy and Noussair [2006]
focus on experimental double auctions and a Tâtonnement setting for the model.

4We use these institutions to estimate the parameters since we have a closed-form solution for the market-clearing price.
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leading to larger bubbles is that multiple trades occur within a period. This characteristic allows myopic

traders to update their valuation and price expectation within a period, thus amplifying the impact of

positive bias on transaction prices.

We also report results from out-of-sample exercises to further validate the mechanism of the model. We

show that the model produces similar dynamics for within-period price growth in the DA.5 Importantly,

our paper is the first to study the effect of trading institutions on distributional outcomes. Specifically,

both in the data and in the model, we show that DA results in higher inequality in trader earnings

than uniform-price institutions, CM and TT. Furthermore, subjects with higher cognitive-reflection skills

earned more than those with lower skills in DA but not in CM and TT.

Overall, our experimental and computational results indicate that trading institutions play an im-

portant role in price discovery and bubble formation. Gode and Sunder [1993, 1997] show that goods

markets can be intelligent, even if traders have zero intelligence. Our paper suggests that, in the context

of asset markets, trading institutions play an important role in determining whether limited intelligence

traders have an impact on aggregate outcomes and bubble formation, and thus on the markets’ intelli-

gence. Furthermore, it provides suggestive evidence that uniform-price institutions, unlike DA, protect

against the adverse effects of limited intelligence traders.

2 Related Literature

The effect of trading institutions on the formation of bubbles, price discovery, efficiency levels, and excess

volatility have been investigated by various authors with mixed results. In field studies, Amihud and

Mendelson [1987] and Stoll and Whaley [1990] compare pre-opening prices to actual trading prices on

the New York Stock Exchange (NYSE). The pre-opening period on the NYSE uses a trading institution

similar to both standard clearinghouses (CM and TT) trading institutions, whereas the actual trading

prices are determined via price formation mechanisms similar to DA. Both Amihud and Mendelson [1987]

and Stoll and Whaley [1990] find that the pre-opening prices are significantly more volatile than the actual

trading prices. However, as Friedman [1993] notes: “neither paper considers the interpretation that the

clearinghouse institution was chosen to reduce volatility, which might otherwise be even higher.” Put

differently, the choice of trading institutions could be endogenous in the field, making an analysis of their

5Recall that we did not use any data from the DA to estimate the parameters of the model.
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effects difficult. Also, different trading institutions are typically used for different assets, so it is difficult

to infer whether differences in the price function arise from the trading institution or the asset class. On

the other hand, our laboratory environment allows us to vary trading institutions exogenously, enabling

us to make causal statements. We next limit our discussion to laboratory studies most closely related to

ours and refer the reader to Noussair and Tucker [2013], Palan [2013], Powell and Shestakova [2016] or

Bosch-Rosa and Corgnet [2021] for more comprehensive reviews of laboratory research on asset markets.

Van Boening et al. [1993] show that bubbles arise in both CM and DA with inexperienced subjects.

However, the limited number of observations (2 per institution) did not allow them to make statistical

comparisons of bubbles across institutions. Friedman [1993] compares DA to CM experimentally in an

environment where order flow information available to traders changes across treatments. He reports that

double auctions increase trading volume, but the informational efficiency across trading institutions is

similar. Furthermore, the allocative efficiency in CM tends to be higher than in DA under limited order

flow information.

Pouget [2007] studies the performance, in terms of information aggregation, of a Walrasian TT and

CM trading institutions in a laboratory environment with common values and asymmetric information

as in Plott and Sunder [1982]. While prices are fully revealing in both TT and CM, gains from trade are

higher in TT since TT fosters learning, which mitigates the impact of bounded rationality and strategic

uncertainty on trading outcomes. We complement this work by focusing on bubble formation.

More recently, Deck et al. [2020] find that the English Dutch auction performs better than a Double

Dutch Auction and DA in an SSW setting. Ding et al. [2020] find that bubbles are greatly reduced

in an Over-the-Counter market relative to DA markets. We complement these studies by introducing

the TT institution and providing a model that we estimate using the experimental data. Duffy and

Ünver [2006] focus on DA in both experiments and model where traders are assumed to be near-Zero

Intelligent. Haruvy and Noussair [2006] focus on experimental double auctions and on a TT setting

with heterogeneous agents for the model. Relative to Duffy and Ünver [2006] and Haruvy and Noussair

[2006], we conduct experiments to compare the impact of three distinct institutions on bubbles’ formation.

Importantly, we also provide a unified parsimonious model that uncovers possible mechanisms behind the

experimental results and conduct out-of-sample exercises to provide support for the proposed mechanisms.

Breaban and Noussair [2015] and Corgnet et al. [2015] find a positive correlation between traders’

cognitive reflection scores and earnings (see also Bosch-Rosa and Corgnet [2021] for a literature review
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on the role that cognitive skills play in financial markets). We add to this evidence by uncovering

interactions between traders’ characteristics and trading institutions, e.g., we find that cognitive reflection

skills generate higher earnings inequality under DA than TT or CM.

3 Experimental Design and Data

The experiment consists of 15 markets conducted between October 2011 and March 2013 at Indiana

University in Bloomington, USA, and at the University of Canterbury in Christchurch, New Zealand.

There were 9 traders in 12 markets and 8 traders in 3 markets resulting in a total of 132 participants.

Participants were undergraduate students at each respective university recruited using the ORSEE subject

recruitment and management program.6 Some of the subjects had participated in previous economics

experiments, but all subjects were inexperienced with asset markets and only participated in a single

market of this study. The experiments were computerized and programmed with the z-Tree software

package.7 All trade took place via the experimental currency francs, and final cash holdings were paid

out in NZ (US) dollars according to a predetermined and publicly known exchange rate. Each session

lasted approximately 90 – 120 minutes, depending upon the treatment.8 We set the parameters in all

sessions to generate average earnings of $18 per hour.

The markets consisted of 15 periods in which participants had an opportunity to trade an asset with

a stochastic dividend process. The dividends each period were independently and randomly drawn with

equal probability from a 4-point distribution of 0, 8, 28, or 60 francs (e.g., Smith et al. [1988], King et al.

[1993], Caginalp et al. [2000], Lei et al. [2001], Haruvy and Noussair [2006], Noussair and Tucker [2006],

Hussam et al. [2008]). Therefore, the average dividend per unit equaled 24 francs in each period. The

asset had no terminal buyout value, and thus, assuming risk neutrality, the asset’s fundamental value at

any time equaled 24 francs times the number of periods remaining. More specifically, the fundamental

value declined from 360 francs in period 1 to 24 francs in period 15.

Traders were initially endowed with 10 units of the asset and 10,000 francs.9 In each trading period,

6See Greiner [2015] for a discussion of the ORSEE recruitment program.
7See Fischbacher [2007] for a discussion of the z-Tree software package.
8Tâtonnement sessions lasted on average 120 minutes, while double auction and call market sessions lasted 90 minutes

on average. All durations include instructional period and subject payments.
9Relatively high cash to asset ratios have been shown to bring about greater mispricing [Caginalp et al., 1998, 2001,

Haruvy and Noussair, 2006, Noussair and Tucker, 2006, 2016, Kopanyi-Peuker and Weber, 2021, among others]. Similar
endowments, and thus cash to asset ratios, to those used in our study are common in the literature when bubble prone
markets are a key component of the research question [Lei et al., 2001, Lei and Vesely, 2009, Lugovskyy et al., 2011, ?,
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traders were allowed to buy and/or sell units of the asset according to the following constraints. A trader

must have sufficient cash to purchase the asset or sufficient units of assets in their inventory to make the

sale. Each market prohibited trading with oneself and imposed a purchase restriction of 10 assets in each

period. This restriction is motivated by the very large cash endowment (the cash-to-asset ratio is 2.78).

This large endowment could cause substantial asymmetries in the price adjustment process under the

Tâtonnement given the proportional price-adjustment rule.10 There were no trading fees and no interest

paid on cash holdings.

At the beginning of each period, traders also made forecasts of the transaction price for that period.

In particular, they made predictions of the average transaction price in the double auction treatment

and uniform market-clearing price in the other treatments. They were paid for the accuracy of their

forecasts.11

At the beginning of each session, a cognitive reflection test (CRT) was conducted [Frederick, 2005].

The test consists of the following three questions:

1. A bat and a ball cost $1.10 in total. The bat costs $1.00 more than the ball. How much does the ball cost?

2. If it takes 5 machines 5 minutes to make 5 widgets, how long would it take 100 machines to make 100 widgets?

3. In a lake, there is a patch of lily pads. Every day, the patch doubles in size. If it takes 48 days for the patch to cover
the entire lake, how long would it take for the patch to cover half of the lake?

CRT allows for the distinction between system 1 and system 2 cognitive processes [Stanovich and West,

2000, Kahneman and Frederick, 2002]. System 1 processes are conducted reflexively and involve minimal

mental reflection. A subject employing system 1 will provide the intuitive but incorrect answers to these

questions, i.e., 10, 100, and 24, respectively. The correct answers of 5, 5, and 47 require conscious mental

effort and depth of thinking associated with system 2 processes. The average number of correct CRT

answers has been shown to be correlated with mispricing [Corgnet et al., 2015, Charness and Neugebauer,

2019, Bosch-Rosa et al., 2018, Noussair and Tucker, 2016, Noussair et al., 2016]. More specifically,

markets exhibiting higher average CRT scores are associated with smaller deviations between prices and

among others] (Lei et al. 2001, Lei and Vesely 2009, Lugovskyy et al. 2014, Noussair and Xu 2015, Ding et al. 2018, Deck
et al. 2020, among others).

10Note that the impact of a subject on aggregate supply is limited by his asset endowment, which, on average, is 10. In
contrast, his impact on aggregate demand is typically much greater than 10, as his cash holdings and prices determine it.
For instance, if the asset is priced at fundamental value in period 1, each subject can afford 27 shares. In period 15, a subject
with the initial cash endowment of 10,000 francs can afford at least 416 shares priced at fundamental value. For more details
on the adjustment rule, please see the next section.

11They were paid 50 francs for the forecast within 10%, 20 francs for within 25%, and 10 francs for within 50% of the
actual price. We followed Haruvy et al. [2007] for the forecast rewards structure. All earnings from forecasting accumulated
in a separate account from the traders’ cash on hand, and thus these payments did not affect the market capital asset ratio.
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fundamental values. Additionally, subjects with lower (higher) average CRT scores are more (less) prone

to engage in unprofitable transactions, i.e., purchases at prices above fundamental value and/or sales at

prices below fundamental values. Since CRT measures a subject’s willingness to think deeply/logically,

we can interpret the CRT scores as a measure of a subject’s level of sophistication.

For participating in the CRT, subjects earned $2 for each correct answer. No payment information

was provided until they received their overall earnings at the end of the session. Upon completion of

the test, subjects were given the market instructions and provided 15 minutes to read through them

on their own.12 After 15 minutes, the experimenter summarized the market, explained the interface of

the bidding screen, and provided answers to the market quiz questions. The experimenter answered any

questions and then started the market. The subjects were paid privately at the end of the experiment.

The only treatment variable in the study is the trading institution. We focused on three different trading

institutions: DA, CM, and TT.

3.1 Experimental Procedures: Double Auction, Call Market, and Tâtonnement

The Double Auction and Call Market trading institutions are widely used in experimental asset market

studies; thus, in what follows, we only briefly summarize the main features. The baseline treatment

uses a continuous double auction with an open order book (e.g., see Smith [1962] or Plott and Gray

[1990]). Under the continuous double auction rules, the market is open for 3 minutes, during which the

buyer/seller can submit orders to buy/sell one unit at a specified price. A trader’s acceptance of an offer

to buy/sell concludes a trade at a price specified by the offer. Therefore, all transactions in a double

auction typically trade at different prices within a period.

The trading institution in the second treatment is a closed-book call market (e.g. Smith et al. [2000],

Friedman [1993], Cason and Friedman [1997]). Under the call market rules, in each period, traders

simultaneously submit their offers to buy and sell units of the asset. They have the opportunity to

submit one offer to buy and one offer to sell each period. An offer to buy consists of the maximum

quantity they want to purchase and the maximum price they are willing to pay for each unit. Similarly,

an offer to sell consists of the maximum quantity they want to sell and the minimum per-unit price they

are willing to sell each of those units. Once all offers to buy/sell are submitted, the computer aggregates

them into demand and supply schedules, and the uniform market price is calculated as the lowest price

12Instructions for each treatment are available upon request.
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that clears the market. Traders who submit buy (sell) orders above (below) the market price make

purchases (sales). Ties for the last unit bought/sold are resolved randomly. To prohibit self-trades, the

market requires the offered buy price to be less than the offered sell price.

Under the Tâtonnement, in each period, subjects are allowed either to buy or to sell units of the asset

as long as they have sufficient cash on hand to cover the purchase or sufficient inventory of assets to make

the sale. At the beginning of each period, the initial price is determined by the median forecasted price

(recall that subjects provided price forecasts at the beginning of each period). Then, each subject decides

how many units of the asset they want to buy or sell at this price by placing bids or asks respectively.

The computer aggregates individual decisions and compares the market quantity demanded (QD) to the

market quantity supplied (QS). If the market clears (QD = QS), then the process stops, and transactions

are completed. If the market does not clear at the initial price, then the price adjusts in the appropriate

direction. Specifically, we employ a proportional adjustment rule, which can be thought of as proceeding

in two stages (see also Joyce [1984, 1998]).

In the first stage, the price adjusts proportionally according to the following rule:

Pt = Pt−1 + γt(QD,t−1 −QS,t−1)

where γt ∈ {2, 1, 0.75, 0.5, 0.25, 0.05} is the adjustment factor and subscript t is the iteration of adjust-

ment. The initial adjustment factor is 2 and it decreases to the next lower value unless we observe either

an excess supply or an excess demand twice in a row, i.e., unless (QD,t − QS,t) is of the same sign as

(QD,t−1−QS,t−1). For small levels of excess supply/demand (or in the second stage), the price adjustment

rule is replaced by

Pt = Pt−1 + 1 if 0 < γt(QD,t−1 −QS,t−1) < 1,

and

Pt = Pt−1 − 1 if − 1 < γt(QD,t−1 −QS,t−1) < 0.

The price adjustment process continues until a market-clearing price is attained upon which all units are

transacted at the uniform price. Subjects had access to flow information with the aggregate demand and

supply of stocks in every iteration of every period. We did not implement an improvement rule: Players

were free to submit new bids and asks without any constraints on their behavior from prior iterations after
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Figure 1: Tâtonnement Price Iterations in Period 2 of Session 1

each price announcement. As a result, it is possible with the price adjustment process to get oscillating

prices, and thus we implemented two ending rules for a period. In particular, a period was concluded

if (1) the difference between excess supply and excess demand was two units or less, and (2) the price

remained strictly within a three franc region for three price adjustment iterations in a row.

Figure 1 illustrates how the price adjustment rule works via the data collected in period 2 of session

1 of Tâtonnement treatment. At the initial price of P1 = 320, aggregate demand is QD,1 = 39 and

aggregate supply is QS,1 = 0. In the next iteration, the price is P2 = 320 + 2(39− 0) = 398. At P2 = 398,

aggregate demand is QD,2 = 0 and aggregate supply is QS,2 = 45, which implies that the adjustment

factor used in the second iteration is 1, so that P3 = 353. The same process continues for all other prices

in the iteration sequence of the period.

3.2 Experimental Results

Figure 2 depicts the time series of prices and fundamental values in our experiment for each session

and each trading institution. The horizontal axis represents periods, and the vertical axis represents

market-clearing prices (for DA, prices reflect session average transaction prices). The last graph (panel

d) compares the mean prices across trading institutions. Figure 2 shows that Double Auction average
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prices are significantly above the average prices of the CM and TT.
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Figure 2: Experimental Data on Prices Across Institutions

In order to further analyze these differences, for each session, we calculated several bubble measures

typically used in the literature.13 The definitions of the measures as well as their average values for each

institution are presented in Table 1. We calculated several bubbles measures to provide a more accurate

picture of the bubble’s magnitude, as each measure captures a different aspect of a bubble. For example,

13See Haruvy and Noussair [2006], Haruvy et al. [2007], Kirchler et al. [2010]. We updated the definitions of some of the
measures by normalizing them by either the total number of shares (TSU), number of periods, or the combination of the two.
The goal was to make them universal for any TSU or number of periods and to enable an intuitive interpretation of these
measures. For example, with our current definition of Turnover, the magnitude of 0.27 has the following interpretation: in
each period, subjects trade, on average, 27% of the TSU. In RPAD and RPD, we normalize price deviations in each period
by the fundamental value of that period rather than the overall fundamental value.
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Turnover is given by the total sum of the number of shares traded in each period (qt) normalized by

the total number of shares (TSU) and number of periods T = 15. It can be interpreted as an average

per-period fraction of all shares. A high turnover indicates a high volume of trade, which can be an

indication of a bubble.

Table 1: Bubble Measures for DA, CM, and Tâtonnement, Medians over All Sessions by Treatment

Bubble Measure Double Call Tâtonnement Tât. & CM
Auction Market combined

Turnover= 1
TSU

1
15

∑15
t=1 qt 0.27 0.08 0.11 0.10

ND= 1
TSU

1
15

∑15
t=1 qt|Pt − FVt| 23.89 4.11 6.66 5.38

RND= 1
TSU

1
15

∑15
t=1 qt

|Pt−FVt|
FVt

0.2 0.03 0.03 0.03

RPAD= 1
15

∑15
t=1

|Pt−FVt|
FVt

0.82 0.35 0.28 0.30

RPD= 1
15

∑15
t=1

Pt−FVt
FVt

0.74 0.11 0.24 0.18

Normalized Deviation (ND) is defined as the weighted sum, over all 15 periods, of the absolute

deviation of period price (average period price for double auction), Pt, from period fundamental value,

FVt, normalized by the total number of shares and number of periods. A high ND indicates that

prices depart from fundamental value and that trade volume at these prices is relatively high. In the

Relative Normalized Deviation (RND), these period differences are further normalized by the respective

fundamental value. For example, RND = 0.2 indicates that the average absolute deviation of price

from the FV was 20%. The Relative Proportional Absolute Deviation (RPAD) differs from the RND in

that it is not weighted by the quantity. A greater value in all of the above measures is indicative of

a greater bubble. Finally, the Relative Proportional Deviation (RPD) differs from the RPAD in that

it takes into account the difference between period price and period fundamental value rather than the

absolute difference. That is, the RPD also indicates the direction of the bubble. Specifically, a positive

RPD indicates that prices tend to be above fundamental value, while a negative RPD s the presence of

a negative bubble.

Result 1. Most bubbles measures are significantly higher under Double Auction than under the uniform-

price institutions, Call Market and Tâtonnement.
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Table 2: Pairwise Comparison of Bubble Measures for DA, Tâtonnement and CM:
Coefficient k of the OLS regression: Measure = Const+ k ∗ TreatmentDummy

Measure DA vs. TT CM vs. TT DA vs. CM DA vs. (CM & TT)
k*DA k*CM k*DA k*DA

Turnover 0.151∗∗
(0.045)

−0.026
(0.017)

0.177∗∗∗
(0.045)

0.164∗∗∗
(0.032)

ND 22.783∗∗
(8.90)

−0.538
(2.23)

23.321∗∗
(8.89)

23.052∗∗∗
(6.14)

RND 0.184∗∗
(0.067)

0.005
(0.013)

0.180∗∗
(0.067)

0.182∗∗∗
(0.046)

RPAD 0.513∗
(0.236)

0.134
(0.111)

0.402
(0.240)

0.457∗∗
(0.176)

RPD 0.409
(0.267)

0.017
(0.143)

0.425
(0.281)

0.417∗
(0.198)

***1%, **5%, *10% significance levels.

Support for Result 1: Table 2 reports the results from OLS regressions where the dependent variable is

given by the bubble measure of reference and the independent variable is given by the treatment dummy

variable of interest. The treatment and omitted dummy variables determine the comparison of interest.

For example, column (1), DA vs. TT, shows that bubble measures, except for RPD, are higher in DA

than in TT. Similar results hold for DA vs. CM and DA vs. pooled CM and TT. The unit of observation

is at the session level. Therefore, the number of observations in the first 3 columns is 10, and in the last

column 15.

While Result 1 focuses on the impact of trading institutions on aggregate outcomes, such as prices and

volume of trade, Result 2 and Result 3 focus on individual traders’ earnings. Result 2 provides evidence

that trading institutions matter for the distribution of earnings across traders and that earnings’ inequality

is higher in the DA trading institution.

Result 2. Double Auction results in higher inequality in traders’ earnings than the uniform-price Call

Market and Tâtonnement institutions.

Table 3: Within-Session Inequality in Earnings

Call Market & Tâtonnement Double Auction

Coefficient of Variation 0.098
<

(0.08)
0.164

Gini Coefficient 0.048
<

(0.07)
0.083

In parenthesis, we report p-values of the coefficients for the DA variable from equation (1), with robust standard
errors.
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Support for Result 2: To evaluate the differences in earnings inequality, we calculated the coefficient of

variation and Gini coefficient for each session based on the final earnings of subjects. We then regressed

each of them on the Double Auction indicator variable, DAS :14

CoefVariationS = 0.098
(0.016)

+ 0.065
(0.035)

DAS

GiniCoefS = 0.049
(0.008)

+ 0.035
(0.017)

DAS ,

(1)

where DAS = 1 for DA sessions and zero otherwise. Table 3 reports the means for the uniform-price

trading institutions and for the DA, and the p-values of the DA dummy variable from regressions spe-

cifications provided in equation (1). The unit of observation is at the session level and the number of

observations in both regressions is 15. As reported in Table 3, these differences are statistically and

economically significant for both measures of inequality.

Our next result shows that trading institutions interact with individual cognitive reflection scores in

determining individual traders’ earnings.

Result 3. Subjects with High-CRT scores earned significantly higher payoffs than subjects with low-CRT

scores under Double Auction, but not under the uniform-price Call Market and Tâtonnement institutions.

Table 4: Final Individual Earnings, by CRT Types and Trading Institution

Low CRT (0,1) High CRT (2,3)

Double Auction
13.04
n=22

<
(0.04)

14.43
n=20

Call Market & Tâtonnement
13.84
n=38

>
(0.33)

13.48
n=43

Earnings are reported in thousands of experimental franks; n denotes the number of subjects. In parenthesis, we
report p-values of the coefficients for the CRT (first row) and CRT ∗DA (bottom row) from equation (2).

Support for Result 3: Table 4 reports the number of subjects (n) with low CRT (CRT=0,1) and high

CRT (CRT=2,3) scores and the means of their individual earnings, separately for double auction and for

the uniform-price institutions (CM and TT).15 Under DA, High-CRT subjects earned, on average, 10.7%

more than Low-CRT subjects. This difference is also statistically significant based on the following OLS

14The number of observations in each regression is 15; robust standard errors.
15The CRT consists of 3 questions. We classified as Low-CRT subjects who answered either 0 or 1 question correctly and

as High-CRT subjects who answered 2 or 3 questions correctly.
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regression of individual earnings (IE):16

IEs = 13.84
(0.28)

− 0.35
(0.36)

CRTs − 0.80
(0.54)

DAs + 1.73
(0.84)

CRTs ∗DAs, (2)

where index s denotes subject; CRT ∈ {0, 1} is a CRT-type dummy variable set to 0 for low CRT types

(with either 0 or 1 correct answers) and to 1 for high-CRT types (with either 2 or 3 correct answers);

and DA ∈ {0, 1} is the trading institution dummy variable set to 1 for DA and to 0 for uniform-price

institutions (CM and TT).

Taken together, these results indicate that heterogeneity in traders’ sophistication plays an important

role both for aggregate and individual outcomes. We next provide a model featuring such heterogeneous

agents that can reproduce the above data patterns at the aggregate and individual levels. In addition

to estimating the model using some of the experimental data, we also perform out-of-sample validation

tests in Section 4.3.

4 Theoretical Model and Results

This section provides a parsimonious model that reproduces the main features of the data patterns we

observe in the experiments. We discuss the calibration of the model parameters, present the theoretical

model results, and compare them to the experimental data. Finally, we show that the model predicts

within-period dynamics for transaction prices in the Double Auction institution that are similar to those

observed in the data. Since data from the double auction institution was not used to calibrate the model,

this evidence provides validation for the model. We also provide additional out-of-sample evidence in

support of the model in Section 4.3.3.

4.1 Outline of the Model

Our modeling of price formation closely follows the experimental design used to implement each institu-

tion. In what follows, we introduce the main parts of the model. Appendix C provides further details on

how each institution is modeled.

16IEs is defined as final earnings of subject s in thousands of experimental francs. Robust standard errors are reported
in parentheses. The number of observations is 123.
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Demand Function The economy consists of individuals with heterogeneous beliefs about the value of

the asset and the expected trading price. The demand function qit for each individual i at period t is

assumed to be proportional to the difference between her asset valuation V i
t and (expected) transaction

price pit, normalized by the fundamental value FVt:

qit = γ

(
V i
t − pit
FVt

)
+ εit, (3)

where εit is a noise term normally distributed with mean 0 and standard deviation σε, and γ is a parameter

to be estimated. Note that pit is the price of the asset at time t in TT and the expected price in CM and

DA (more on this below).17

Valuations The valuation of the asset differs across individuals. We assume there are two types of

individuals: myopic traders and fundamental traders. This choice captures the heterogeneity in price

forecasting among traders in the empirical data as presented in Result 4 in Section 4.3.3. We think of

valuations as the future price expectation of a trader. The valuation for each type is given by

V i
t =

 p̃it (1 + β) if myopic trader

FVt if fundamental trader
, (4)

where p̃it is the anchoring price, and β is a parameter to be estimated.18 That is, the valuation of myopic

traders in a period is anchored to the previous period’s price adjusted for the period expected dividend,

and it exhibits a bias if β is not equal to zero.19 For example, if β > 0 (β < 0), myopic traders exhibit an

upward bias (downward bias). The assumption that agents anchor their valuation to the previous period

price is designed to capture anchoring as a behavioral bias documented in behavioral economics.20 On

the other hand, fundamental trader’s valuations are equal to the fundamental value of the asset.

17We include superscript i for the price noting that in Double Auction the price could be individual-specific.
18In TT and CM, we assume this price equals the market-clearing price in the last period adjusted by the average dividend.

However, this price is different in DA since transaction prices are observed both within and across periods. We assume that
p̃t is equal to the average price in the previous period adjusted by the average dividend across periods at the beginning of
the period, whereas it is equal to the average of transaction prices within a period.

19For example, if the price in period t − 1 is equal to the fundamental value in period t − 1 and β > 0, then the myopic
trader’s valuation in period t is higher than the fundamental value of the asset in period t.

20The anchoring-and-adjustment heuristic was first introduced by Tversky and Kahneman [1974]. Following this work,
many studies documented the presence of anchoring effects in decision making processes. Some examples include Ariely
et al. [2003] and Critcher and Gilovich [2008], who documented anchoring effects in valuations/purchasing decisions and in
forecasting tasks, respectively. For a literature review, see Furnham and Boo [2011]. According to anchoring, investors use
pre-existing information or the first information they find to estimate the value of a financial instrument.
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We denote the fraction of myopic traders by δt, and assume it changes over time. Specifically, we

assume that myopic traders are heterogenous in the degree of their foresight abilities, with some of

them realizing that their valuations deviate from fundamental value sooner than others. That is, δt

decreases over time and converges to zero by the end of the experiment, i.e., all myopic traders switch

to fundamental traders by the end of the trading horizon. Thus, the parameter δt captures that myopic

traders switch to fundamental traders at different points in time. Potentially the process driving δt can

differ across institutions. However, in the interest of keeping the institutions comparable, we assume that

this process is the same across all institutions.

Market Clearing Price in TT and CM The parsimonious structure of the model allows us to have

a closed-form solution for the expected market-clearing price in Tâtonnement:

Proposition 4.1. The expected market-clearing price in Tâtonnement is given by:

p∗t = (1 + β) δt
(
p∗t−1 − d

)
+ (1− δt)FVt. (5)

Proof. The expected market-clearing TT price in equation (5) is obtained by plugging valuations of

myopic and fundamental traders from equation (4) into equation (3), weighting the quantity deman-

ded/supplied by myopic and fundamental traders by δt and 1 − δt, respectively, and setting aggregate

demand equal to zero.

If we assume that expectations are normally distributed around the expected TT market-clearing

price, we can show that the expected market-clearing price is equal to equation (5) also in CM. The proof

for the expected market-clearing price under CM is more involved, and we provide it in Appendix A.21

Price Expectations We next describe how we model price expectations pit in equation (3). In TT,

pit is the provisional price within each period. In CM and DA there is no provisional price, and thus

individuals need to form expectations about it. In CM and DA, we assume that the price expectation pit

21We cannot derive the analytical expression for the equilibrium price in DA, however, in the simulations we verify that
when there is no updating within a period and when individuals are not subject to short-sale and cash constraints, the
equilibrium price in DA coincides with the market-clearing price in TT and CM.
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is normally distributed around the expected market-clearing price of TT:

pit = (1 + β) δtp̃
i
t +
(
1− δt + ηit

)
FVt, (6)

where ηit is drawn from a common knowledge normal distribution with mean 0 and standard deviation

ση, capturing heterogeneity in beliefs about the expected price.22

Expectations’ Updating We assume in all institutions individuals are not fully rational, i.e., they

are of limited intelligence. They form their expectation about the price and the asset valuation through

the price p̃it. In TT and CM institutions, we assume this price is equal to the market-clearing price in

the previous period adjusted by the mean dividend across periods: p̃it = p∗t−1 − d, where p∗t−1 is the

market-clearing price in the previous period. In DA, this price is equal to the average of the trading

prices in the previous period, adjusted for the dividend drop. This price affects the price expectation of

all individuals in the current period and the asset valuation of myopic traders. The key difference across

institutions is the frequency with which agents update their price expectations.

Specifically, in TT, this price is updated only across periods, affecting only the asset valuation of

myopic traders because price expectations do not play any role within a period. In CM, this price is

again only updated across periods since there is a unique market-clearing price within a period. However,

this price, in CM, affects the price expectation of all traders in addition to the asset valuation of myopic

traders. In DA, since multiple trades happen within a period, there is more opportunity for individuals

to update this price. More specifically, we assume that p̃it,s is updated as follows:

p̃it,s =


p∗t−1 − d if s = 1∑τ=s−1

τ=1 p∗t,τ+p
∗
t−1−d

s if s > 1 & αit,s < α∗

p̃t,s−1 else

, (7)

where p∗t,s is the trading price in period t for the sth transaction and αit,s is an individual level shock

drawn from a uniform distribution between 0 and 1. That is, in DA, α∗ fraction of individuals update

their anchoring price as the average of all the prices observed within that period plus the previous average

period transaction price. We also set the maximum number of transactions within an period to be S in

22We assume the noise term to be proportional to the fundamental value so that the effect of the noise term on the demand
function has no trend.
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DA to replicate the time limit set within a period in DA experiments.

4.2 Model Estimation

We next use the experimental data to estimate the model. To this end, we assume that the fraction of

myopic traders decreases over time following the process:

δ∗t = 1− e−δ(
15−t
t−1 ). (8)

This functional form implies that δ∗t ∈ [0, 1] . Specifically, it is decreasing from δ∗1 = 1 to δ∗15 = 0. The

parameter δ captures the speed of convergence of δ∗t to 0. Given this assumption, we need to estimate five

parameters: γ, β, δ, σε, ση (see Table 5 for the parameters’ interpretation). We estimate these parameters

in two stages using the data from experiments with the Tâtonnement and Call Market institutions as we

have closed-form solutions for the market-clearing prices in these institutions.

Specifically, in the first stage, we estimate β and δ using the market-clearing price data from the

Tâtonnement and Call Market experiments. Our model implies an analytical solution for the market-

clearing price in these institutions as a function of β and δ as shown in equation (5). We normalize

equation (6) by the corresponding fundamental value, which gives us

pit
FVt

=
(1 + β) δt

(
p∗t−1 − d

)
FVt

+
(
1− δt + ηit

)
. (9)

We estimate β and δ by minimizing the squared distance between the theoretical market-clearing

prices and the transaction prices observed in the data (both normalized by the fundamental values). The

standard deviation of the error term from this estimation gives us the estimate of ση.

In the second stage, we use the data on the quantity traded to estimate γ. We do this again by

minimizing the sum of the squared distance between model implied quantity predictions and their data

counterparts. The standard deviation of the error term from this estimation gives us the estimate for σε.

The details of the estimation can be found in Appendix B. Table 5 presents the results of the estima-

tion. We estimate that there is an upward bias: β is equal to 4.8%. The estimated speed of convergence,

δ = 2.32, implies that the evolution of the share of myopic in the population follows the pattern in Figure
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Table 5: Parameters Estimation

Parameter Definition Value Standard Deviationa

β myopic traders’ upward bias 0.048 0.008

δ speed of convergence of the share of myopic traders 2.32 0.08

γ demand parameter 1.93 0.25

α∗ Updating 0.09

σε st. dev. of the noise in the demand function 1.0

ση st. dev. of the noise in the market-clearing price 0.26

S max number of transactions within period in DA 300

The standard errors for the parameters β and δ are computed using the standard error formulas for the
GMM estimation. The standard error for the parameter γ is computed using the Fisher information
matrix from the MLE estimation. The parameters σε and ση are the standard errors of the residuals
from the estimation, and they do not have standard errors to be reported. The parameters α∗ and S
are exogenously set and does not have a standard error to be reported.
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Figure 3: Estimated Share of Myopic Optimists in Population
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3. The value of the demand parameter γ, equal to 1.93, can be interpreted as follows. If the price equals

the fundamental value, the valuation should be 1.26 times greater than the price to generate at least one

unit of expected demand.23

Next, we can interpret the estimated value of σε = 1 as follows. In the simulation, we round the

quantity demanded to the nearest integer. So, any ε ≥ 0.5 results in a positive demand of one unit with

probability 1 − F (0.5), where F is normally distributed with mean 0 and standard deviation σε. For

an individual with a valuation equal to the current price, there is a 31% probability of buying one unit

or more and a 31% probability of selling one unit or more. Similarly, the estimated value of ση = 0.26

implies that for 35% of traders, their price expectation will exceed the trading price by 10% of the FV .24

To determine the fraction of myopic traders who update their price expectation within a period, we

set α∗ = 0.09 to account for the fact that we have 100 individuals in the simulation, whereas there are

9 traders in the experimental economies. This choice implies that individuals have approximately the

same number of opportunities to update their subjective price beliefs within a period, both in the model

and the data. In the next section, we show that even if we do not target price movements in the Double

Auction and do not use data from the Double Auction to estimate the model’s parameters, the model

does a good job at reproducing patterns of the data. We also conduct a robustness analysis with respect

to the α∗ parameter. Lastly, we set the maximum number of transactions allowed within a period in DA,

S, to 300 to match the average number of transactions per individual observed within a period in DA

experiments.

4.3 Model Results

Given the estimated parameters, we use the theoretical model to simulate market-clearing prices for each

institution. To isolate the impact of institutional differences on market-clearing prices and quantities, we

keep the parameters of the model constant across institutions. Note that we did not use the data from

Double Auction markets to estimate the model’s parameters. We provide details on how each institution

is simulated in Appendix C.

23Non-integer quantity demanded is rounded to the nearest integer. From equation 3, to get at least one unit of demand,
we need qit ≥ 0.5, which gives us V it ≥ 1 + 0.5

γ
= 1.26 when price is equal to the fundamental value, pit = FVt.

24Here, 1 −G(0.1) = 0.35, where G is normally distributed with mean 0 and standard deviation ση = 0.26.
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4.3.1 Price Comparison Across Institutions

Figures 4a-4c compare the model-generated and actual transaction prices from the data for the three

institutions. The model does a fairly good job in capturing the bubble-crash pattern of asset prices

observed in the data for all institutions, even though we used a limited set of parameters.25
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Figure 4: Prices across Institutions Figures 4a-4c compare the model-generated and actual transaction prices

from the data for each institution. Figure 4d shows the model simulated prices across the three institutions.

Figure 4d compares the model-generated prices across trading institutions. The model generates

larger bubbles in DA than in TT and CM. This result indicates that the model succeeds in reproducing

important patterns observed in the experimental data (see Result 1, Figure 2(d), and Tables 1 and 2 in

Section 3.2). Notice that the parameters of the model are not chosen to match any data from DA. The

25The number of parameters in the model is 5, whereas the number of data points to be matched is 140 data points for
prices (70 price data points for TT and CM) and 1540 data points for quantities.
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model parameters are all chosen to match the price and quantity realizations in TT and CM. Thus, the

result that DA generates a larger bubble than uniform-price institutions is not a targeted outcome of the

model.

Next, we provide more intuition on the mechanism of the model. What features of the model generate

bubbles and crashes? Why are bubbles more prominent in DA than in uniform-price TT and CM, as

observed in the data?

The main driving force behind the formation of bubbles and crashes is the presence of myopic traders

who exhibit a positive bias. As can be seen from the theoretical price in TT, as long as p∗t−1 > FVt−1,

β > 0 (the bias is positive) and δt > 0 (there are myopic traders), the model generates a price path

that is higher than the fundamental value. For example, using equation (5), when all traders are myopic

(δt = 1), we have p∗t = (1 + β)
(
p∗t−1 − d

)
, which results in an explosive path for prices. Instead, when

all traders are fundamental traders (δt = 0), price converges to fundamental value: p∗t = FVt. More

generally, the price path expressed as the difference between current and last period prices is given by:

p∗t − p∗t−1 = −δtd+ δtβ
(
p∗t−1 − d

)
+ (1− δt)(FVt − p∗t−1).

This path implies that when δt is close to 1, the price change is greater than −d, and can even be

positive, producing an increasing price path. However, as δt approaches zero, the change in price becomes

smaller than −d since FVt − pt−1 = FVt−1 − d− pt−1 < −d. Therefore, the decline in δt over time leads

to a crash. That is, as δt approaches zero, all traders become fundamental value traders, and the impact

of the positive bias becomes smaller.

Our model also ranks institutions according to the magnitudes of bubbles. Importantly, this ranking

is in line with the ranking observed in the experimental data: Tâtonnement and Call Markets generate

similar bubbles, whereas Double Auction generates a significantly larger bubble. Next, we explain what

generates this ranking in the model. The main difference between DA and other institutions is the

decentralized nature of trades in the former. That is, in DA, unlike in TT and CM, multiple trades take

place within a period, and traders update their price expectations within a period. This process enables

expectations’ updating also within a period, in addition to across periods.

Given the structure of updating we consider, in TT and CM, individuals only update their price

expectations across periods, and price expectations coincide with the evolution of the theoretical price.
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Since in TT and CM, the market-clearing price is identical to the theoretical price, updating contributes

nothing to individuals’ information set. Therefore, even if we introduce updating in the TT based on

provisional prices within a period, market-clearing prices are not significantly affected. Unlike in DA,

the positive bias does not amplify price departures from the FV in the TT. This happens because of two

reasons. First, in the TT, updating affects only asset valuations. It does not affect price expectations

since price expectations play no role in the TT. Secondly, the updating mechanism of the provisional

price plays an anchoring role in the asset valuation. When the asset valuation is high, and there is

excess demand in the market, the next iteration provisional price is updated upward to clear the market.

This results in upward updating of the asset valuation in the next iteration. Similarly, when the asset

valuation is low and there is excess supply, the provisional price is updated downward, decreasing the

asset valuation in the next iteration. Thus, the provisional price plays the role of anchoring the asset

valuation towards the theoretical market clearing price in the presence of within period updating. Hence,

updating does not affect prices in TT.

In contrast, in DA, there is more room for updating since more information is revealed within a period

through decentralized transactions. If these observations are used in updating price expectations within

a period, they have amplifying effects on bubble formation. To see this, notice that, given the functional

form for price expectations, which is derived from the theoretical market-clearing price in TT and CM,

individuals assign weight (1 + β)δt to the observation of last period price and weight (1 − δt) to the

fundamental value. Since δt converges to 0 over time, price expectations converge to the fundamental

value over time. However, in early periods, δt is close to 1, resulting in an exploding price path since

β > 0. This model feature results in a larger bubble in DA as long as individuals are allowed to update

their prices within a period.

Figures 5a to 5d display the effect of updating on the formation of bubbles across different institutions.

In these figures, we compare the model-generated prices with different assumptions about the intensity

of updating. Notice that α∗ represents the degree of updating, as it captures the fraction of myopic

traders who update their expectations within a period. When α∗ = 0, there is no updating, while as

α∗ increases, the fraction of individuals who update their price expectations based on observed prices

increases.26 Figures 5a to 5d show that as updating becomes more prevalent, bubbles become larger in

26When α∗ = 0, the model still generates a slightly higher bubble in DA compared to TT and CM. The main reason for
this is the presence of the short-selling constraint. In DA, most of the transactions happen between individuals with extreme
beliefs. In principle, the extreme positive and negative beliefs should cancel out, and we should observe a similar pattern
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DA, while there is no impact on prices in TT and CM.
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Figure 5: Price Comparison: The figures plot model generated prices under different parametrizations for a fraction

of individuals updating their price expectations within a period in DA. In all institutions, all individuals update their price

expectations across every period. However, in DA within each period α∗ fraction of individuals update their prices given

the average price observed within that period.

4.3.2 Within-Period Price Updating in DA

Our model predicts that the main difference in the bubble size between the DA and uniform-price institu-

tions (CM and TT) is due to within-period updating in the DA (by design, there is only one transaction

price in both CM and TT). This section investigates whether the predicted within-period updating pattern

as in TT and CM. However, because of the short-selling constraint, sellers with extreme beliefs have a limited effect on
transaction prices, and buyers with extreme beliefs have a stronger impact on transaction prices. This mechanism generates
a slightly higher bubble in DA compared to TT and CM. This mechanism weakens as we increase the number of individuals
simulated and disappears if we relax the short-selling constraint.
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in the DA model-simulated data matches that in the experimental data. This exercise can be considered

an out-of-sample test of our model since neither the disaggregated transaction-level DA prices nor the

aggregated period-level DA prices were used to construct the simulated data.

According to the model, the within-period price trends are positive in initial periods and then switch

to a negative trend in periods that follow the bubble’s peak. The negative trend first becomes stronger

as the difference between transaction prices and the fundamental value converges from the peak to

the fundamental value. Towards the very end of the experiment, the magnitude of the negative trend

decreases. To test this prediction, we constructed the average within-period price trends for the simulated

and the experimental data as we describe next.

In the experimental data, we have five DA sessions, each consisting of 15 periods. For each session

s and period p, we regressed the individual transaction price (Ppst) on the within-period transaction

counter (t=1,2,3,...). The estimated slope represents the within-period price growth per transaction. For

each period p, we then calculated the average slope and labeled it as the data within-period price growth.

For the simulated data, we performed the same exercise for each period of 1000 simulated sessions and

labeled the corresponding average slope as the simulated within-period price growth. Figure 6 compares the

evolution of within-period price growths across periods. It illustrates that the price growth patterns are

very similar both in terms of the magnitude and dynamics across periods, which validates the theoretical

mechanism that the difference between the DA and uniform-price institutions is due to the within-period

price updating and growth in DA.27

Our model makes other predictions that could be tested in future experiments. For example, the

model predicts that bubbles are smaller if we limit the opportunities for updating within a period under

DA. This limiting can be accomplished if subjects have access to bids and asks but do not explicitly

see all transaction prices in DA but only see their own transaction prices. Additional indirect evidence

that provides support for the mechanism of the model is provided by Ding et al. [2020], who compare an

Over-the-Counter trading institution to the DA. Unlike the DA, in Over-the-Counter markets, bids and

asks are not publicly available: subjects need to contact counterparts to trade. Ding et al. [2020] show

that this feature decreases the number of transactions within a period and eliminates bubbles.

27Note that the peaks, both in the experimental and simulated data, do not always occur in the same period, which makes
the exact match between the simulated and experimental average within-period trends highly unlikely.
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Figure 6: Within-period price growth rates in DA: data and model simulations.

4.3.3 Distributional Effects and Forecasts

We compare the distributional effects of institutions on terminal period cash holdings generated by our

model simulations. As shown in Table 6, we find that while uniform-price institutions (CM and TT) yield

similar measures of inequality, DA generates substantially higher inequality among traders. Specifically,

the coefficient of variation of cash holdings in CM and TT is around 0.07, whereas, in DA, this statistic

increases to 0.28. The Gini coefficient of cash holdings in CM and TT is around 0.04. This number

increases to 0.15 in DA. That is, consistent with the empirical results summarized in Result 2, both

measures of inequality imply that DA results in higher inequality in trader earnings than uniform-price

trading institutions.

Table 6: Distributional Effects

Tâtonnement Call Market Double Auction

Coefficient of Variation 0.07 0.07 0.28

Gini Coefficient 0.04 0.04 0.15

The Table shows various measures of inequality for the terminal period cash
holdings among all traders across all the model simulations. Coefficient of vari-
ation is measured as the ratio of the standard deviation to the average.

To better understand who the winners and losers are in each institution, we classified traders into two

groups in the model simulations. Group 1 includes traders who switch from myopic-noise to fundamental
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trader in the first half of the experiment. Group 2 includes the remaining traders.28 We think of this

classification as the theoretical counterpart of the empirical classification into high CRT and low CRT

groups. Therefore, we define a dummy variable C̃RT to be equal to 1 for Group 1 individuals and

C̃RT = 0 for Group 2 individuals.

According to Figure 3, during the first 7 periods, the vast majority of all simulated traders are

myopic. That is, 7 periods are insufficient for the majority of Group 1 individuals to switch from myopic

to fundamental traders. Therefore, we expect that, on average, Group 1 traders have only slightly lower

valuations than Group 2 traders. However, by period 8, 10% of traders switch to fundamental traders,

and their share keeps increasing after that. Therefore, in periods 8-15, we expect to see a pronounced

difference in asset valuations between Group 1 and Group 2 traders. Specifically, Group 1 traders should

have lower valuations than Group 2 traders. To test these conjectures with the simulated data, we first

normalize all individual forecasts by the corresponding fundamental value: ÑV st ≡ V s
t /FVt., where V s

t

is defined as in equation 4. Then, for each trader, we calculate the mean Normalized Valuation (NV) for

the first 7-period interval and for the last 8-period interval: ÑV s,1−7 and ÑV s,8−15, and regress them on

the C̃RT dummy variable in two separate OLS regressions. Our estimation results are presented below:29

ÑV s,1−7 = 1.34
(0.0)
− 0.06

(0.0)
C̃RT s

ÑV s,8−15 = 1.77
(0.0)
− 0.62

(0.0)
C̃RT s.

(10)

The results indicate that, in line with our expectations, compared to Group 2 traders, Group 1 traders

have only 6% lower valuations in periods 1-7, but 62% lower valuations in periods 8-15.

Next, we check whether a similar pattern is observed in the experimental data. We use the observed

data on forecasts provided by each subject before each period begins. As in the case of the simulated

data, we normalize individual forecasts by the corresponding fundamental value, NFst ≡ Forecastst/FVt,

and calculate mean net forecasts for each subject for the first 7-period interval and for the last 8-period

interval: NFs,1−7 and NFs,8−15, respectively. The OLS estimates of regressing the NF on the constant

28The idea behind this classification is that Group 1 traders can be thought of as sophisticated traders who predict the
crash of the bubble in advance, whereas the traders in the second group are the somewhat less sophisticated ones. Across
all institutions, 10% of the traders belong to Group 1 and the rest belongs to Group 2.

29The number of observations in each regression is 10,000.

29



and CRT dummy with the standard errors clustered by session are presented below:30

NFs,1−7 = 1.09
(0.05)

+ 0.02
(0.07)

CRTs

NFs,8−15 = 2.15
(0.31)

− 0.49
(0.10)

CRTs,

(11)

where CRT = 1 for High-CRT subjects and CRT = 0 for Low-CRT subjects.31

The results indicate that (i) in periods 1-7, the difference in forecasts between the High-CRT and

Low-CRT traders is not statistically significant, and (2) in periods 8-15, High-CRT traders have 49%

lower forecasts than Low-CRT traders. Formally, we summarize this evidence in the following result.32

Result 4. High-CRT and Low-CRT subjects make similar forecasts in the first half of the experiment.

High-CRT subjects make significantly lower forecasts than Low-CRT subjects in the second half of the

experiment.

Next, given the overlap of the CRT group classifications in the model and the data, we compare

the earnings of the two groups across the institutions. We find that in all three institutions, terminal

period cash holdings of the first group are always larger than the ones of the second group. However, this

difference is much larger in DA. In TT, the ratio of Group 1 to Group 2 traders’ average final earnings is

1.04. This ratio is 1.02 in CM. However, in DA, this ratio increases to 1.21. More formally, we run the

same regression as in equation 2:

IEs = 13.51
(0.01)

+ 0.35
(0.02)

CRTs − 0.25
(0.01)

DAs + 2.49
(0.03)

CRTs ∗DAs. (12)

Consistent with the empirical results summarized in Result 3, the simulated model also implies that

Group 1 individuals (corresponding to high-CRT subjects in the data) have significantly higher earnings

than Group 2 individuals (corresponding to low CRT subjects in the data) in the DA. In contrast, this

difference is much smaller in the uniform-price institutions. These results suggest that more sophisticated

traders (as captured by higher CRT scores) are more likely to take advantage of less sophisticated traders

(with lower CRT scores) in DA than in uniform-price institutions such as TT and CM.

30The number of observations in each regression is 123, which corresponds to the number of all subjects with recorded
CRT.

31Recall that the definitions and distributions of the High-CRT and Low-CRT are provided in Table 4.
32We do not provide a comparison of forecasts across institutions due to potential endogeneity problem. Namely, treatments

with greater bubbles are more likely to have less accurate forecasts.
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5 Conclusions

This paper explores the role that different trading institutions play in bubbles’ formation in laboratory

asset markets. In this study, in addition to Call Market and Double Auction, we employ the Tâtonnement

trading institution, which has not been previously explored in laboratory asset markets, despite its

historical and contemporary relevance. The results show that bubbles are significantly smaller in uniform

price institutions, Tâtonnement and Call Market, than in Double Auction, suggesting that the trading

institution and the associated price formation mechanism play a crucial role in the formation of bubbles.

We build on the approach of Duffy and Ünver [2006], Haruvy and Noussair [2006], Baghestanian et al.

[2015], by providing a heterogeneous-agent model with myopic and fundamental-value traders to better

understand the experimental results within a unified framework for the three institutions.

We use data only from the Tâtonnement and Call Market experiments to estimate the model. The

model reproduces important data patterns, including that bubbles are larger in Double Auction than in

the other two trading institutions. This result is due to the presence of myopic traders with a positive

bias and is linked to two unique key characteristics of the Double Auction trading institution. Namely

that multiple transaction prices take place within a period, and those are public information. As a

result, myopic traders update their price expectations within a period in the Double Auction, based on

within-period transaction prices, and have amplifying effects on price departures from fundamental value.

In the model and the data, we find that trading institutions also play an essential role in the earnings

distribution. Specifically, there is higher inequality in traders’ earnings in Double Auction. Furthermore,

sophisticated traders earn higher payoffs than unsophisticated traders only under Double Auction. These

results suggest essential interaction effects between behavioral biases and trading institutions. Trad-

ing institutions play an important role in determining the degree of market intelligence when limited

intelligence traders are present.
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A Proofs

Proof. In TT, the market-clearing price is given by
∑

i q
i
t

(
p∗t,TT

)
= 0 which results:

p∗t,TT = (1 + β) δt
(
p∗t−1 − d

)
+ (1− δt)FVt

To find the market-clearing price in CM, we need to find out the price which clears the market, i.e.,
equalizing the aggregate demand to 0. We will study the total demand of myopic and fundamental traders
separately.

Myopic Traders Myopic traders submit the quote
(
pi,ot , q

i,o
t

)
where pi,ot = (1 + β) δt

(
p∗t−1 − d

)
+(

1− δt + ηi
)
FVt and qi,ot = γ

(
(1+β)(p∗t−1−d)−p

i,o
t

FVt

)
+ εit = γ (1− δt)

(
(1 + β)

(
p∗t−1−d
FVt

)
− 1
)
− γηi + εit.

These quotes determine whether they will be buyers or sellers. If qi,ot ≤ 0, that means the individual will
sell qi,ot quantities as long as the price is such that p∗t ≥ p

i,o
t . So, the condition to become a seller is:

γ (1− δt)
(

(1 + β)

(
p∗t−1 − d
FVt

)
− 1

)
− γηi + εit ≤ 0

p∗t − (1 + β) δt
(
p∗t−1 − d

)
−
(
1− δt + ηi

)
FVt ≥0

which can be written as

ηi ≤ (1− δt)ω∗t + h (p∗t )

εit ≤− γ (1− δt)ω∗t + γηi

where ω∗t = (1 + β)
(
p∗t−1−d
FVt

)
− 1 and h (p∗t ) =

p∗t−(1+β)(p∗t−1−d)
FVt

. In this interval of η, the individual

becomes a seller and demands qi,ot = γ (1− δt)ω∗t − γηi + εit.

Similarly, if qi,ot ≥ 0, that means the individual will buy qi,ot quantities as long as the price is such
that p∗t ≤ p

i,o
t . This implies that the condition to become a buyer is:

ηi ≥ (1− δt)ω∗t + h (p∗t )

εit ≥− γ (1− δt)ω∗t + γηi.

Thus, the total demand of myopic traders becomes:

Qot (p∗t ) = δt

∫ (1−δt)ω∗
t+h(p

∗
t )

−∞

∫ −γ(1−δt)ω∗
t+γη

−∞
(γ (1− δt)ω∗t − γη + ε) dFε (ε) dFη (η) +

δt

∫ ∞
(1−δt)ω∗

t+h(p
∗
t )

∫ ∞
−γ(1−δt)ω∗

t+γη
(γ (1− δt)ω∗t − γη + ε) dFε (ε) dFη (η) .

Fundamental Traders Fundamental traders submit
(
pi,ft , qi,ft

)
where pi,ft = (1 + β) δt

(
p∗t−1 − d

)
+(

1− δt + ηi
)
FVt and qi,ft = γ

(
FVt−pi,ft
FVt

)
+εit = γδt

(
1− (1 + β)

(
p∗t−1−d
FVt

))
−γηi+εit. Given these quotes,

we can determine the conditions to become a seller or a buyer for fundamental traders. To become a
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seller, ηi needs to satisfy:

ηi ≤ (1− δt)ω∗t + h (p∗t )

εit ≤ γδtω∗t + γηi.

To become a buyer, ηi needs to satisfy

ηi ≥ (1− δt)ω∗t + h (p∗t )

εit ≥ γδtω∗t + γηi.

So, the total demand from fundamental traders becomes:

Qft (p∗t ) = (1− δt)
∫ (1−δt)ω∗

t+h(p
∗
t )

−∞

∫ γδtω∗
t+γη

−∞
(−γδtω∗t − γη + ε) dFε (ε) dFη (η) +

(1− δt)
∫ ∞
(1−δt)ω∗

t+h(p
∗
t )

∫ ∞
γδtω∗

t+γη
(−γδtω∗t − γη + ε) dFε (ε) dFη (η) .

Then, aggregate demand becomes:

Qt (p∗t ) = Qot (p∗t ) +Qft (p∗t )

=

∫ (1−δt)ω∗
t+h(p

∗
t )

−∞

[
δt
∫ γδtω∗

t+γη−γω∗
t

−∞ (γ (1− δt)ω∗t − γη + ε) dFε (ε) +

(1− δt)
∫ γδtω∗

t+γη
−∞ (−γδtω∗t − γη + ε) dFε (ε)

]
dFη (η) +

∫ ∞
(1−δt)ω∗

t+h(p
∗
t )

[
δt
∫∞
γδtω∗

t+γη−γω∗
t

(γ (1− δt)ω∗t − γη + ε) dFε (ε) +

(1− δt)
∫∞
γδtω∗

t+γη
(−γδtω∗t − γη + ε) dFε (ε)

]
dFη (η) .

The equation above simplifies to

Qt (p∗t ) =

∫ (1−δt)ω∗
t+h(p

∗
t )

−∞

[ ∫ γδtω∗
t+γη−γω∗

t
−∞ (−γη + ε) dFε (ε) +

(1− δt)
∫ γδtω∗

t+γη
γδtω∗

t+γη−γω∗
t

(−γδtω∗t − γη + ε) dFε (ε)

]
dFη (η) +

∫ ∞
(1−δt)ω∗

t+h(p
∗
t )

[ ∫∞
γδtω∗

t+γη−γω∗
t

(−γη + ε) dFε (ε) +

(1− δt)
∫ γδtω∗

t+γη−γω∗
t

γδtω∗
t+γη

(−γδtω∗t − γη + ε) dFε (ε)

]
dFη (η) .

Since the terms in the bracket are symmetric around 0 for any η, and η is drawn from a Normal distribution
with mean 0, the equation above is equal to 0, if (1− δt)ω∗t +h (p∗t ) = 0. Thus, the market-clearing price
in CM also becomes:

p∗t,CM = (1 + β) δt
(
p∗t−1 − d

)
+ (1− δt)FVt.

B Estimation

The calibration is conducted in two stages. In the first stage, using the analytical price equation in TT
and CM, we estimate β and δ by minimizing the square of the distance between the theoretical price in
TT and the equilibrium trading price in the experiments for TT and CM. This gives us 140 observations
(70 for each institution) since we have 5 sessions for each institution conducted and each of them consists
of15 periods. However, we drop the first observation in each experiment since theoretical price depends
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on the market-clearing trading price in the previous period, which is not observed for the first period.
Instead, we use the first period market-clearing price to pin down the initial belief about the price in
period 0. Specifically, we solve the following minimization problem:

min
β,δ

2∑
i=1

5∑
s=1

15∑
t=2

ps,it − (1 + β) δt

(
ps,it−1 − d

)
− (1− δt)FVt

FVt

2

where ps,it is the observed price in institution i ∈ {TT,CM}, session s, and period t and FVt is the
fundamental value in period t. Notice that using equation 6, this minimization problem can also be
written as

min
β,δ

2∑
i=1

5∑
s=1

15∑
t=2

(
ηs,it

)2
which allows us to obtain an estimate for ση.

Then, in the second stage, we use the demand function in equation 3 to estimate the parameters γ and
σε, given the parameter estimates for β and δ from the first stage. We again estimate these parameters by
minimizing the sum of the squared distance between the model implied quantity prediction and the data
from the TT and CM experiments. Since traders’ valuations include prices in the previous period, the
demand function for traders in a given period will also include prices in the previous period. Therefore,
we only use quantity data starting from period 2 for each individual. This gives us 14 observations for
each individual. We have 9 individuals in each of the five sessions in TT, which gives us 45 individuals.
So, we have 45*14=630 observations from the TT experiment. In CM, individuals can post both bid and
ask prices. We dropped all the observations with 0 quantities. This results in 910 quantity observations
in CM experiment. In total, we have 1540 data points for quantities.

The demand function becomes:

qs,it =


γ

(
(ps,jt−1−d)(1+β)−p

s,j
t

FVt

)
+ εs,it with prob δt

γ
(

1− ps,jt
FVt

)
+ εs,j,it with prob 1− δt

where i denotes the individual, s denotes the session, and j denotes the institution.

Then, γ solve

min
γ

2∑
j=1

5∑
s=1

Nj
s∑

i=1

15∑
t=2

(
q̃s,j,it − qs,j,it

)2
where q̃s,j,it is the quantity for individual i in period t session s and institution j. Notice that q̃s,j,it −qs,j,it =
−γηit+ εit, i.e., the standard deviation of the error in the estimation will serve as an estimate for γση +σε.

C Simulation

In this appendix we provide a detailed description of each simulated market environment. Similar to
the experimental setting, in each market, N agents interact in T periods and trade a single financial
asset.33 Initially each agent i is endowed with xi0 units of cash and yi0 units of the financial asset. At
the end of every period the asset pays random dividends drawn with equal probability from a commonly

33In the experiments N = 9 and T = 16. In the simulations we set N = 100 and T = 16 to reduce the noise in the
simulations due to a low number of agents.
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known support {d1, d2, d3, d4}, with di ≥ 0 and d1 < d2 < d3 < d4. The expected dividend is denoted
as d̄ = 1

4

∑4
i=1 di. To fit the laboratory environment, we set the dividend support to {0, 8, 28, 60},

but in general, the support does not necessarily have to be restricted to four values or to an i.i.d.
dividend process. The fundamental value of the asset in every period is common knowledge and given
by FVt = d̄(T − t+ 1) for t = 1, ..., T. As in the experiment, we impose no-borrowing, no short-selling
and no maximum trading quantity constraints.34

At the beginning of the experiment a random number from a uniform distribution is drawn for each
individual to determine their types; myopic or fundamental traders. This random number for each
individual is fixed over time and across all institutions in the simulations. If this random number is
smaller than δt, the individual is assigned to be a myopic trader, otherwise she becomes a fundamental
trader.

C.1 Tâtonnement

In tâtonnement auctions every trading period starts at some initial price p0,t. Conditional on this “indic-
ative” price, a trader submits his/her quantity following equation (3), where εit is drawn from a normal
distribution with mean 0 and variance σ2ε at the beginning of each period.35 Notice that if the quantity
submitted is positive, the trader is on the demand side, and if it is negative the trader is on the supply side
of the market. Based on those submitted demand and supply quantities, the auctioneer/experimenter
computes the aggregate excess demand, zt, where

zt =
∑
i

yit. (13)

If zt = 0 at the initial price, markets clear immediately at prices p0,t, trades are executed and cash and
unit holdings are updated accordingly. If zt > 0, there is excess demand at the indicative price p0,t, while,
if zt < 0, there is excess supply at the indicative price p0,t. Prices are updated following a proportional
rule:

pj+1,t = pj,t + θzj,t, (14)

where θ is the adjustment factor. We set θ to a sufficiently low number to ensure the convergence on
market clearing price. Conditional on the new indicative prices, agents re-submit new quantities yit.
Iterations continue until |zt| < ξ, where we set ξ = 1.36 37

Once the market-clearing price is determined, trade occurs according to the submitted quantities
at the market-clearing price. We update the total cash and aggregate quantities each individual hold,
and draw a random number to determine the realization of the dividend payments. Given the dividend
payment, we update the cash holdings for each individual, and move to the next period.

34When individuals buy the asset, they are constrained with their cash holdings, they cannot borrow to buy an asset
(borrowing constraint). If the borrowing constraint is violated, the quantity is determined by dividing the total cash holding
to the price. When they sell the asset, they are constrained with the amount they hold (short-selling constraint). If the
short-selling constraint is violated, the quantity submitted becomes the total amount of asset holding individual has. We
also restrict individuals to trade at most 10 quantities of asset in each period as in the experiments.

35We fix these draws across all institutions to avoid any potential bias due to random numbers.
36Lowering this number does not change the result. For N = 1000, average number of trades occurring within a period is

around 300.
37Notice that the demand function (3) allows for non-integer quantities to be submitted. We allow such quantities to be

submitted during the simulation in tâtonnement auctions. Restricting the quantities submitted to only integers does not
change the qualitative conclusions of the paper.
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C.2 Call Markets

As in the experiments, in the Call-Market auctions, individuals submit their price and quantity bids
simultaneously. Unlike in the experiments, we only allow agents to submit one offer either to buy or
sell the asset.38 These bids are determined by equations (3) for quantities and (6) for prices. As in TT,
εit is drawn from a normal distribution with mean 0 and variance σ2ε , and ηit is drawn from a normal
distribution with mean 0 and variance σ2η at the beginning of each period. Then, an offer in the call
market can be expressed by a pair

(
pit, q

i
t

)
, where pit is determined by equation (6) and qit is determined

by equation (3).39 Notice that qit can be positive or negative. When qit > 0, pit is the maximum price at
which the agent is willing to buy qit units of the asset. When qit < 0, pit is the minimum price at which
the agent is willing to sell qit units of the asset.

Given the bids and asks, we construct the demand and supply schedules by aggregating all these offers,
and assign the lowest price that clears the market as the market-clearing price. Given the market-clearing
price, we conduct the trade as suggested by the offers.40 Once trades are completed, the quantity and
cash holdings for each individual are updated. We, then, draw a random number to determine dividend
payments, and update their cash holdings given these dividend payments, and move to the next period.

C.3 Double Auction

In the experiments with double auction, within each period trade has to occur in a specified time frame.
To mimic this feature of the experiments, in the simulations, we divide a period into S subperiods. In
each subperiod, we draw a random number for each individual i ∈ 1, 2, ..., N , and rank these individuals
according to this random number. Each subperiod starts with an ask price pat,s, the identity of the

individual who posted the ask price iat,s, a bid price pbt,s and the identity of the individual who posted the

bid price ibt,s. The initial value for the ask price is set to a very low value, and the initial value for the bid
price is set to a very high value, such that each individual finds it optimal to update the ask/bid prices
when it is their turn.

Within each period, starting from the highest ranked individual, we ask the individual whether s/he
wants to trade at the current bid or ask price. If the expected price of the individual

(
Et−1p

i
t

)
is higher

than the ask price pat,s and the individual’s demand qit given by equation (3) is greater than 1 at the
current ask price pt = pat,s, trade occurs, and the individual buys the unit from the other party who posts
the ask price. Once the quantity and cash holdings of both individuals are updated, we move to the next
subperiod.

Otherwise, if the expected price of the individual is lower than the bid price (
(
Et−1p

i
t

)
< pbt,s), and

the demand of the individual at the expected price is less than -1 (qit
(
pt = pbt,s

)
< −1), again trade occurs

by the individual selling the unit to the individual who submitted the bid price. Once the quantity and
cash holdings of both individuals are updated, we move to the next subperiod.

If the individual does not want to trade at the current ask/bid prices, the individual is able to update
the current ask/bid prices. This is determined by comparing the expected price of the individual to the
current ask/bid prices. If the expected price of the individual is lower than the current ask price, and if
the individual wants to sell at least a unit at his/her expected price, the ask price and the identity of the
submitter of the ask price are updated. If the expected price of the individual is higher than the current

38In the data, more than 70% of the time, individuals submit one active offer. In these cases, the other offer has no effect
on equilibrium prices and quantities.

39As in the tâtonement auction, these offers are also subject to no borrowing and no short-selling constraints.
40At this stage, it is possible to have excess demand or supply given the equilibrium price since offers indicate the maximum

amount of quantities to be traded at the indicated prices. We conduct the trade by ranking the individuals according to
their willingness to buy and sell indicated by their price bids. This process allocates the asset to the ones who value it the
most.
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bid price and the individual is willing to buy at least a unit at his/her expected price, then the current
bid price and the identity of the submitter of the bid price are updated.

If trade doesn’t occur with individual i, we move to the next individual according to their ranks. We
continue this procedure until trade occurs within a subperiod. Once trade occurs, we update the cash
and quantity holdings of each party in the trade, and move to the next subperiod. We continue this
procedure for all subperiods within a period.

At the end of each period, price expectations are updated according to equation 6 where ηit is drawn
from a normal distribution with mean 0 and variance σ2η at the beginning of each period and pst = p∗t−1−d.
Within each period and after each transaction, another random number from a uniform distribution is
drawn for each individual and if this random number is smaller than α∗, the individual updates her
price expectation setting pst as the average price between the first and sth transaction within a period:
pst =

∑s
j=1 p

j
t . At the end of each period, pt is computed as the average price across all transactions

within a period.

D Additional Results

D.1 Bubble measures

Table 7 reports pairwise comparisons of bubble measures across institutions, using the Mann-Whitney
test with sessions as units of observation. While the results are overall consistent with the regression
results provided in Table 2 (and thus Result 1), the significance level of some pairwise comparisons is
lower. This is not surprising as non-parametric tests tend to be more conservative that parametric tests.

Table 7: Pairwise Comparison of Bubble Measures for DA, Tâtonnement and CM:
z-statistics and significance levels of the Mann-Whitney Test.

Measure DA vs. TT CM vs. TT DA vs. CM DA vs. (CM & Tât)

Turnover 2.19∗∗ −1.15 2.61∗∗∗ 2.82∗∗∗

ND 1.78∗ −0.10 1.98∗∗ 2.20∗∗

RND 1.98∗∗ 0.10 1.98∗∗ 2.33∗∗

RPAD 1.78∗ 0.73 1.36 1.84∗

RPD 0.74 −0.31 1.36 1.35

***1%, **5%, *10% significance levels.
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